If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40000=1341t+8.2t^2
We move all terms to the left:
40000-(1341t+8.2t^2)=0
We get rid of parentheses
-8.2t^2-1341t+40000=0
a = -8.2; b = -1341; c = +40000;
Δ = b2-4ac
Δ = -13412-4·(-8.2)·40000
Δ = 3110281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1341)-\sqrt{3110281}}{2*-8.2}=\frac{1341-\sqrt{3110281}}{-16.4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1341)+\sqrt{3110281}}{2*-8.2}=\frac{1341+\sqrt{3110281}}{-16.4} $
| 3x-24=69 | | 2p/1.15=50 | | 2x^2+4=-5x+1 | | 1x=180-x | | y/1.5=3 | | 2(x-4)=3x-(2x+4)+x | | k^2=60-20k | | .5k+2=5+5/6k | | 2x-15=-3x-40 | | 7(13-2x)-9(x+10=0 | | 3x+9=-17 | | 40000=134t+8.2t^2 | | 2x=(2xx.6)=96 | | 1/3x-3/10=5/2x+7/10 | | 4/5+1/2+3/x=41/20,x= | | 40,000=134t+8.2t^2 | | 9+5y=2y-11+20 | | 4x-18=7x-39 | | a–1.5=4.2* | | 9x+15=4x+40 | | 4x-15=6x-25 | | -7x-2.8=6x-13.8 | | 15+5x/6-1/3+7=8 | | H=50-0.2x | | 8x+18=6x+26 | | 4/3-7x/3+4x=18 | | 2u^2=5u-3 | | 5x-30=8x-51 | | 2x–x−4=3x | | 5x-20=9x-44 | | 6/9=10w | | x-6=-3×+22 |